Unit 10 Notes

Vocabulary

Vocabulary Term	Definition	Example
altitude	in a geometrical figure, the perpendicular distance from the vertex to the plane of the base	See illustrations of each three- dimensional figure
Cone	an object or shape that has a circular base and tapers to a point at the top, or has a circular top and tapers to a point at the bottom	See oblique and right cone

Cross-section of a polygon	A cross-section of a space figure is the shape of a particular two- dimensional "slice" of a space figure.
Cube	A six sided polyhedron whose faces are all squares. It has 6 faces, 12 vertices, and 18 edges.
A three-dimensionl figures with two	
circular or oval bases whose net	
contains a rectangle.	
A line connecting the centers of the	
bases of a cylinder	

*Lateral Edge of a polyhedron	The segment that connects the vertices of the bases to form the sides	
Euler's Formula	For any polyhedron with V vertices, F faces and E edges,	$V-E+F=2$.
Face of a polyhedron	The polygons that form the sides and bases of a polyhedron	
*Lateral face of a polyhedron	The polygons that form the sides of a polyhedron	
Isometric Drawing	A way to show three sides of a figure from a corner view.	
Orthographic Drawing	A drawing that shows a threedimensional object in which the sight for each view is perpendicular to the plane of the picture. It shows 6 different views of the object: front, back, top, bottom, left side, and right side	
Midpoint Formula for 3-D figures	$\left(\frac{\Delta x}{2}, \frac{\Delta y}{2} \frac{\Delta z}{2}\right)$	
Perspective Drawing	Non-vertical parallel lines are drawn so that the meet at the vanishing point	
Polyhedron	A closed three-dimensional figure formed by 4 or more polygons that intersect only at their edges	
Prism	A polyhedron with rectangular sides and two congruent bases.	
- Oblique Prism	A prism that has at least one nonrectangular lateral face	
- Right Prism	A prism whose lateral faces are all rectangles.	
Pyramid	A polyhedron with one polygonal base and triangular sides that meet at a common vertex.	

*Regular pyramid	A pyramid whose base is a regular polygon and whose lateral faces are isosceles triangles	The distance from the vertex of a regular pyramid to a midpoint of an edge of the base regular pyramid
	The point of intersection of the lateral faces of a pyramid. It is opposite be base of the pyramid.	
*Vertex of a pyramid		

Volume	The number of non-overlapping unit cubes that will exactly fill the interior of a three-dimensional figure	$\mathrm{V}=\mathrm{Bh}$, where B is the area of the base and h is the altitude of the figure. $V_{\text {cube }}=s^{3}$ because the area of the base is s^{2} and the height is s. $\mathrm{V}_{\text {cylinder }}=\pi r^{2} \mathrm{~h}$ because the area of a circle is $A=\pi r^{2}$ $\mathrm{V}_{\text {cone }}=1 / 3 \pi r^{2} \mathrm{~h}$ because a cone is $1 / 3$ of a cylinder. - The volume of any prism is found by multiplying the area of its base by its height. - The volume of a pyramid is found by taking $1 / 3$ the area of the base times its height.

Resources:

http://www.mathleague.com/help/geometry/3space.htm\#cone
http://islamiclanguage.net/DIY53d.swf Click on the shapes, the circle marked "cross-sections", and nets". They are at the base of the illustration. Click on the side bar icons and check your understanding.

